Logistic Regression in ML and AI with Examples and Projects
Logistic Regression in ML and AI with Examples and Projects
The Complete Code
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
from sklearn.model_selection import train_test_split
train = pd.read_csv("titanic_train.csv")
def impute_age(cols):
Age = cols[0]
Pclass = cols[1]
if pd.isnull(Age):
if Pclass == 1:
return 37
elif Pclass == 2:
return 29
else:
return 24
else:
return Age
train['Age'] = train[['Age','Pclass']].apply(impute_age,axis=1)
train.drop('Cabin',axis=1,inplace=True)
train.dropna(inplace=True)
Sex = pd.get_dummies(train['Sex'],drop_first=True)
Embark = pd.get_dummies(train['Embarked'],drop_first=True)
train = pd.concat([train,Sex,Embark],axis=1)
train.drop(['Sex','Embarked','Name','Ticket'],axis=1,inplace=True)
train.drop('PassengerId',axis=1,inplace=True)
X_train, X_test, y_train, y_test = train_test_split(train.drop('Survived',axis=1),
train['Survived'], test_size=0.30,
random_state=101)
from sklearn.linear_model import LogisticRegression
logmodel = LogisticRegression()
logmodel.fit(X_train,y_train)
predictions = logmodel.predict(X_test)
from sklearn.metrics import classification_report
print(classification_report(y_test,predictions))
from sklearn.metrics import confusion_matrix
confusion_matrix(y_test,predictions)
Comments
Post a Comment