Logistic Regression in ML and AI with Examples and Projects

 Logistic Regression in ML and AI with Examples and Projects






The Complete Code


import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
from sklearn.model_selection import train_test_split


train = pd.read_csv("titanic_train.csv")

def impute_age(cols):
    Age = cols[0]
    Pclass = cols[1]
    if pd.isnull(Age):
        if Pclass == 1:
            return 37
        elif Pclass == 2:
            return 29
        else:
            return 24
    else:
        return Age

train['Age'] = train[['Age','Pclass']].apply(impute_age,axis=1)

train.drop('Cabin',axis=1,inplace=True)
train.dropna(inplace=True)

Sex = pd.get_dummies(train['Sex'],drop_first=True)
Embark = pd.get_dummies(train['Embarked'],drop_first=True)
train = pd.concat([train,Sex,Embark],axis=1)

train.drop(['Sex','Embarked','Name','Ticket'],axis=1,inplace=True)
train.drop('PassengerId',axis=1,inplace=True)

X_train, X_test, y_train, y_test = train_test_split(train.drop('Survived',axis=1),
                                                    train['Survived'], test_size=0.30,
                                                    random_state=101)
from sklearn.linear_model import LogisticRegression
logmodel = LogisticRegression()
logmodel.fit(X_train,y_train)
predictions = logmodel.predict(X_test)
from sklearn.metrics import classification_report
print(classification_report(y_test,predictions))

from sklearn.metrics import confusion_matrix
confusion_matrix(y_test,predictions)


Comments

Popular posts from this blog

Linear Regression in ML and AI with Examples and Project